Learning Task-Specific State Representations by Maximizing Slowness and Predictability

نویسندگان

  • Rico Jonschkowski
  • Oliver Brock
چکیده

The success of reinforcement learning in robotic tasks is highly dependent on the state representation – a mapping from high dimensional sensory observations of the robot to states that can be used for reinforcement learning. Even though many methods have been proposed to learn state representations, it remains an important open problem. Identifying the characteristics existing methods are optimizing to find good state representations, combining them, and adding new characteristics will lead to a more robust method for state representation learning. We define a new characteristic – predictability – and combine it with slowness. We implement these characteristics in a neural network and show that this approach can find good state representations from visual input in simulated robotic tasks.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Involving Motor Capabilities in the Formation of Sensory Space Representations

A goal of sensory coding is to capture features of sensory input that are behaviorally relevant. Therefore, a generic principle of sensory coding should take into account the motor capabilities of an agent. Up to now, unsupervised learning of sensory representations with respect to generic coding principles has been limited to passively received sensory input. Here we propose an algorithm that ...

متن کامل

Learning Discrete Representations via Information Maximizing Self-Augmented Training

Learning discrete representations of data is a central machine learning task because of the compactness of the representations and ease of interpretation. The task includes clustering and hash learning as special cases. Deep neural networks are promising to be used because they can model the non-linearity of data and scale to large datasets. However, their model complexity is huge, and therefor...

متن کامل

Learning Document Image Features With SqueezeNet Convolutional Neural Network

The classification of various document images is considered an important step towards building a modern digital library or office automation system. Convolutional Neural Network (CNN) classifiers trained with backpropagation are considered to be the current state of the art model for this task. However, there are two major drawbacks for these classifiers: the huge computational power demand for...

متن کامل

Task Effectiveness Predictors: Technique Feature Analysis VS. Involvement Load Hypothesis

How deeply a word is processed has long been considered as a crucial factor in the realm of vocabulary acquisition. In literature, two frameworks have been proposed to operationalize the depth of processing, namely the Involvement Load Hypothesis (ILH) and the Technique Feature Analysis (TFA). However, they differ in the way they have operationalized it specially in terms of their attentional c...

متن کامل

Controllable Invariance through Adversarial Feature Learning

Learning meaningful representations that maintain the content necessary for a particular task while filtering away detrimental variations is a problem of great interest in machine learning. In this paper, we tackle the problem of learning representations invariant to a specific factor or trait of data. The representation learning process is formulated as an adversarial minimax game. We analyze ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013